Skip to main content
Log in

Theoretical study of the thermodynamic parameters of (CaO)n nanoclusters with n = 2–16 in the gas and solution phases: proton affinity, molecular basicity, and pKb values

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamic quantities such as proton affinity (PA) and molecular basicity (GB) for (CaO)n nanoclusters with n = 2–16 have been calculated using three computational models of the density functional theory (DFT) (Becke, 3-parameter, Lee-Yang-Parr (B3LYP), Minnesota 2006, Perdew-Wang 1991 (PW91), Coulomb attenuated method-B3LYP, and ωB97XD functionals); Møller-Plesset perturbation theory; and Hartree-Fock with the cc-PVNZ (n = D and T) basis set in the gas phase. Absolute deviation error (AAD%) indicates that obtained PA and GB values using DFT model and the B3LYP method with mean percentage errors of 0.77 and 0.90%, respectively, have the higher accuracy than the other methods and models. The values obtained for the proton affinity and gas-phase basicity of the nanoclusters were compared to experimental data reported in the literature. In order to confirm basicity properties, quantum descriptors of the molecular electrostatic potential (MEP) and valence natural atomic orbital energies (NAO) have been computed. The MEP and NAO values for species under probe display excellent correlation coefficient. The polarizable continuum model for investigating the solvents effect of water, DMSO, and benzene on the basicity of the CaO nanoclusters has been applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stewart R (1985) The proton: appellation to organic chemistry. Academic Press, NewYork

    Google Scholar 

  2. Carrol FA (1998) Perspectives on structure and mechanism in organic chemistry. Brooks-Cole, New York

    Google Scholar 

  3. Zhao J, Zhang RY (2004). Atmos Environ 38:2177

    Article  CAS  Google Scholar 

  4. Enami S, Mishra H, Hoffmann MR, Colussi AJ (2012). J Phys Chem A 116:6027

    Article  CAS  PubMed  Google Scholar 

  5. Kennedy RA, Mayhew CA, Thomas R, Watts P (2003). Int J Mass Spectrom 223:627

    Article  Google Scholar 

  6. Salaeh R, Prommin C, Chansen W, Kerdpol K, Daengngern R, Kungwan N (2018). J Mol Liq 252:428

    Article  CAS  Google Scholar 

  7. Zhang N, Yi H, Zeng D, Zhao Z, Wang W, Costanzo F (2018). Chem Phys 502:77

    Article  CAS  Google Scholar 

  8. Abdolmaleki A, Eskandari K, Molavian MR (2016). Polym. 87:181

    Article  CAS  Google Scholar 

  9. Fatollahpour M, Tahermansouri H (2017). CR Chim 20:942

    Article  CAS  Google Scholar 

  10. Iizuka T, Hattori H, Ohno Y, Sohma J, Tanabe K (1971). J.Catal. 22:130

    Article  Google Scholar 

  11. Yoosuk BU, domsap P, Puttasawat B, Krasae P (2010). Chem Eng J 162:135

    Article  CAS  Google Scholar 

  12. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J (2008). Fuel. 87:2798

    Article  CAS  Google Scholar 

  13. Uggerud E (1992). Mass Spectrom Rev 11:389

    Article  CAS  Google Scholar 

  14. Deakyne CA (2003). Int J Mass Spectrom 227:601

    Article  CAS  Google Scholar 

  15. Gal J-F, Maria P-C, Raczynska ED (2001). J Mass Spectrom 36:699

    CAS  PubMed  Google Scholar 

  16. Meot-Ner M (2005). Chem Rev 105:213

    Article  CAS  PubMed  Google Scholar 

  17. Meot-Ner M (2003). Int J Mass Spectrom 227:525

    Article  CAS  Google Scholar 

  18. Bleiholder C, Suhai S, Paizs B (2006). J Am Soc Mass Spectrom 17:1275

    Article  CAS  PubMed  Google Scholar 

  19. Bouchoux G (2006). J Mass Spectrom 41:1006

    Article  CAS  PubMed  Google Scholar 

  20. Aguado A, Lo’pez JM (2000). J Phys Chem B 104:8398

    Article  CAS  Google Scholar 

  21. Boutou V, Lebeault MA, Allouche AR, Bordas C, Paulig F, Viallon J, Chevaleyre J (1998). Phys Rev Lett 80:2817

    Article  CAS  Google Scholar 

  22. Saunders WA (1988). Phys Rev B 37:6583

    Article  CAS  Google Scholar 

  23. Martin TP, Bergmann T (1989). J Chem Phys 90:90 6664

    Google Scholar 

  24. Xie S, Rosynek MP, Lunsford JH (1999). J Catal 188:32

    Article  CAS  Google Scholar 

  25. Guzman J, Gates BC, Bruce C (2004). J Catal 226:11

    Article  CAS  Google Scholar 

  26. Hehre WJ, Ramdom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  27. Chandra AK, Goursot A (1996). J Phys Chem 100:11599

    Article  Google Scholar 

  28. Remko M, Liedl KR, Rode BM (1996). J Chem Soc Perkin Trans 2:1743

    Article  Google Scholar 

  29. Ghanty TK, Ghosh SK (1997). J Phys Chem A 101:5022

    Article  CAS  Google Scholar 

  30. Remko M, Liedl KR, Rode BM (1997). J Mol Struct (THEOCHEM) 418:179

    Article  CAS  Google Scholar 

  31. Remko M, Rode BM (1999). J Phys Chem A 103:431

    Article  CAS  Google Scholar 

  32. Rao JS, Sastry GN (2006). Int J Quantum Chem 106:1217

    Article  CAS  Google Scholar 

  33. Luna A, Mo O, Yanez M, Gal J-F, Maria PC, Guillemin J-C (2006). Chem Eur J 12:9254

    Article  CAS  PubMed  Google Scholar 

  34. Safi ZS, Frenking G (2013). Int J Quantum Chem 113:908

    Article  CAS  Google Scholar 

  35. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785

    Article  CAS  Google Scholar 

  37. Frisch MJ, Head-Gordon M, Pople JA (1990). Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  38. Hohenberg P, Kohn W (1964). Phys Rev B 136:864

    Article  Google Scholar 

  39. Kohn W, Sham LJ (1965). Phys Rev 140:1133

    Article  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JJA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene R, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  41. Becke AD (1988). Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  42. Reed AE, Weinstock RB, Weinhold F (1985). J Phys Chem 83:735

    Article  CAS  Google Scholar 

  43. Cances M, Mennucci B, Tomasi J (1997). J Chem Phys 107:3032

    Article  CAS  Google Scholar 

  44. Mennucci B, Tomasi J (1997). J Chem Phys 106:5151

    Article  CAS  Google Scholar 

  45. Cossi M, Scalmani G, Rega N, Barone V (2002). J Chem Phys 117:43

    Article  CAS  Google Scholar 

  46. Zobeydi R, Rahman Setayesh S (2018). Chem Phys 504:31

    Article  CAS  Google Scholar 

  47. Arnett M (1984). J Am Chem Soc 106:6759

    Article  CAS  Google Scholar 

  48. Raczy’nska ED, Makowski M, Górnicka E, Darowska M (2005). Int J Mol Sci 6:143

    Article  Google Scholar 

  49. Richard JP (1998). Biochemistry. 37:4305

    Article  CAS  PubMed  Google Scholar 

  50. Kirby A (1997). Acc Chem Res 30:290

    Article  CAS  Google Scholar 

  51. Mejías JA, Lago S (2000). J Chem Phys 113:7306

    Article  Google Scholar 

  52. Tissandier MD et al (1998). J Phys Chem A 102:7787

    Article  CAS  Google Scholar 

  53. Markovic Z, Tošovic J, Milenkovic D, Markovic S (2016). Comput Theor Chem 1077:11

    Article  CAS  Google Scholar 

  54. Camaioni DM, Schwerdtfeger CA (2005). J Phys Chem A 109:10795

    Article  CAS  PubMed  Google Scholar 

  55. Shokri A, Abedin A, Fattahi A, Kass SR (2012). J Am Chem Soc 134:10646

    Article  CAS  PubMed  Google Scholar 

  56. Moser A, Range K, York DM (2010). J Phys Chem B 114:13911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kouzu M, Hidaka J-s (2012). Fuel. 93:1

    Article  CAS  Google Scholar 

  58. Chambers C, Holliday AK (1975) Butterworth & Co; 84

  59. Bartmess JE (2011) In: Mallard WG, Linstrom PJ (eds) NIST chemistry Webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg, p 20899 (http://webbook.nist.gov)

    Google Scholar 

  60. Correa JV, Jaque P, Olah J, Toro-Labbe A, Geerlings P (2009). Chem Phys Lett 470:180

    Article  CAS  Google Scholar 

  61. Ebrahimi A, Habibi-Khorasani SM, Jahantab M (2011). Comput Theor Chem 966:31

    Article  CAS  Google Scholar 

  62. Hilal R, Abdel Khalek AA, Elroby SAK (2005). Int J Quantum Chem 103:332

    Article  CAS  Google Scholar 

  63. Klein E, Rimarcik J, Lukes V (2009). Acta Chim Slov 2:37

    Google Scholar 

Download references

Acknowledgements

The author gives special thanks go to the Department of Chemistry and High Performance Computing Center (SHPCC) of Sharif University of Technology to provide the computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahrbanoo Rahman Setayesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2.74 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zobeydi, R., Nazari, P. & Rahman Setayesh, S. Theoretical study of the thermodynamic parameters of (CaO)n nanoclusters with n = 2–16 in the gas and solution phases: proton affinity, molecular basicity, and pKb values. Struct Chem 30, 1805–1818 (2019). https://doi.org/10.1007/s11224-019-01318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01318-9

Keywords

Navigation